RDF Core
A type-safe and extensible Dart library for representing and manipulating RDF data without additional dependencies (except for logging).
Core of a whole family of projects
If you are looking for more rdf-related functionality, have a look at our companion projects:
- Encode and decode RDF/XML format: rdf_xml
- RDF Dataset Canonicalization (RDF-CANON): rdf_canonicalization
- Easy-to-use constants for many well-known vocabularies: rdf_vocabularies
- Generate your own easy-to-use constants for other vocabularies with a build_runner: rdf_vocabulary_to_dart
- Map Dart Objects βοΈ RDF: rdf_mapper
Further Resources: π Getting Started Guide | π Cookbook with Recipes | π οΈ Design Philosophy | π Official Homepage
Installation
dart pub add rdf_core
π Quick Start
import 'package:rdf_core/rdf_core.dart';
void main() {
// Parse Turtle data
final turtleString = '''
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://example.org/john> foaf:name "John Doe" ; foaf:age 30 .
''';
// Decode turtle data to an RDF graph
final graph = turtle.decode(turtleString);
// Find triples with specific subject and predicate
final nameTriples = graph.findTriples(
subject: const IriTerm('http://example.org/john'),
predicate: const IriTerm('http://xmlns.com/foaf/0.1/name')
);
if (nameTriples.isNotEmpty) {
final name = (nameTriples.first.object as LiteralTerm).value;
print('Name: $name');
}
// Create and add a new triple
final subject = const IriTerm('http://example.org/john');
final predicate = const IriTerm('http://xmlns.com/foaf/0.1/email');
final object = LiteralTerm.string('john@example.org');
final triple = Triple(subject, predicate, object);
final updatedGraph = graph.withTriple(triple);
// Encode the graph as Turtle
print(turtle.encode(updatedGraph));
}
β¨ Features
- Type-safe RDF model: IRIs, literals, triples, graphs, quads, datasets, and more
- RDF 1.1 Dataset support: Full support for named graphs with
RdfDataset
,Quad
, andRdfNamedGraph
- Multiple serialization formats: Turtle, JSON-LD, N-Triples, and N-Quads
- Automatic performance optimization: Lazy indexing provides O(1) queries with zero memory cost until needed
- Graph composition workflows: Create, filter, and chain graphs with fluent API
- Extensible & modular: Create your own adapters, plugins, and integrations
- Specification compliant: Follows W3C RDF 1.1 and related standards
- Convenient global variables: Easy to use with
turtle
,jsonld
,ntriples
, andnquads
for quick encoding/decoding
Core API Usage
Global Variables for Easy Access
import 'package:rdf_core/rdf_core.dart';
// Global variables for quick access to codecs
final graphFromTurtle = turtle.decode(turtleString);
final graphFromJsonLd = jsonldGraph.decode(jsonLdString);
final graphFromNTriples = ntriples.decode(ntriplesString);
final datasetFromNQuads = nquads.decode(nquadsString);
// Or use the preconfigured RdfCore instance
final graph = rdf.decode(data, contentType: 'text/turtle');
final encoded = rdf.encode(graph, contentType: 'application/ld+json');
final dataset = rdf.decodeDataset(data, contentType: 'application/n-quads');
final encodedDataset = rdf.encodeDataset(dataset, contentType: 'application/n-quads');
Manually Creating a Graph
import 'package:rdf_core/rdf_core.dart';
void main() {
// Create an empty graph
final graph = RdfGraph();
// Create a triple
final subject = const IriTerm('http://example.org/alice');
final predicate = const IriTerm('http://xmlns.com/foaf/0.1/name');
final object = LiteralTerm.string('Alice');
final triple = Triple(subject, predicate, object);
final graph = RdfGraph(triples: [triple]);
print(graph);
}
Decoding and Encoding Turtle
import 'package:rdf_core/rdf_core.dart';
void main() {
// Example: Decode a simple Turtle document
final turtleData = '''
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
<http://example.org/alice> foaf:name "Alice"@en .
''';
// Option 1: Using the convenience global variable
final graph = turtle.decode(turtleData);
// Option 2: Using RdfCore instance
// final rdfCore = RdfCore.withStandardCodecs();
// final graph = rdfCore.decode(turtleData, contentType: 'text/turtle');
// Print decoded triples
for (final triple in graph.triples) {
print('${triple.subject} ${triple.predicate} ${triple.object}');
}
// Encode the graph back to Turtle
final serialized = turtle.encode(graph);
print('\nEncoded Turtle:\n$serialized');
}
Decoding and Encoding N-Triples
import 'package:rdf_core/rdf_core.dart';
void main() {
// Example: Decode a simple N-Triples document
final ntriplesData = '''
<http://example.org/alice> <http://xmlns.com/foaf/0.1/name> "Alice"@en .
<http://example.org/alice> <http://xmlns.com/foaf/0.1/knows> <http://example.org/bob> .
''';
// Using the convenience global variable
final graph = ntriples.decode(ntriplesData);
// Print decoded triples
for (final triple in graph.triples) {
print('${triple.subject} ${triple.predicate} ${triple.object}');
}
// Encode the graph back to N-Triples
final serialized = ntriples.encode(graph);
print('\nEncoded N-Triples:\n$serialized');
}
Decoding and Encoding JSON-LD
import 'package:rdf_core/rdf_core.dart';
void main() {
// Example: Decode a simple JSON-LD document
final jsonLdData = '''
{
"@context": {
"name": "http://xmlns.com/foaf/0.1/name",
"knows": {
"@id": "http://xmlns.com/foaf/0.1/knows",
"@type": "@id"
},
"Person": "http://xmlns.com/foaf/0.1/Person"
},
"@id": "http://example.org/alice",
"@type": "Person",
"name": "Alice",
"knows": [
{
"@id": "http://example.org/bob",
"@type": "Person",
"name": "Bob"
}
]
}
''';
// Using the convenience global variable
final graph = jsonldGraph.decode(jsonLdData);
// Print decoded triples
for (final triple in graph.triples) {
print('${triple.subject} ${triple.predicate} ${triple.object}');
}
// Encode the graph back to JSON-LD
final serialized = jsonldGraph.encode(graph);
print('\nEncoded JSON-LD:\n$serialized');
}
Working with RDF Datasets and N-Quads
import 'package:rdf_core/rdf_core.dart';
void main() {
// Create quads with graph context
final alice = const IriTerm('http://example.org/alice');
final bob = const IriTerm('http://example.org/bob');
final foafName = const IriTerm('http://xmlns.com/foaf/0.1/name');
final foafKnows = const IriTerm('http://xmlns.com/foaf/0.1/knows');
final peopleGraph = const IriTerm('http://example.org/graphs/people');
final quads = [
Quad(alice, foafName, LiteralTerm.string('Alice')), // default graph
Quad(alice, foafKnows, bob, peopleGraph), // named graph
Quad(bob, foafName, LiteralTerm.string('Bob'), peopleGraph), // named graph
];
// Create dataset from quads
final dataset = RdfDataset.fromQuads(quads);
// Option 1: Using the convenience global variable
final nquadsData = nquads.encode(dataset);
// Option 2: Using RdfCore instance
// final nquadsData = rdf.encodeDataset(dataset, contentType: 'application/n-quads');
print('N-Quads output:\n$nquadsData');
// Decode N-Quads data back to dataset
final decodedDataset = nquads.decode(nquadsData);
// Access default and named graphs
print('Default graph has ${decodedDataset.defaultGraph.triples.length} triples');
print('Dataset has ${decodedDataset.namedGraphs.length} named graphs');
for (final namedGraph in decodedDataset.namedGraphs) {
print('Named graph ${namedGraph.name} has ${namedGraph.graph.triples.length} triples');
}
}
π§βπ» Advanced Usage
Decoding and Encoding RDF/XML
With the help of the separate package rdf_xml you can easily encode/decode RDF/XML as well.
dart pub add rdf_xml
import 'package:rdf_core/rdf_core.dart';
import 'package:rdf_xml/rdf_xml.dart';
void main() {
// Option 1: Use the codec directly
final graph = rdfxml.decode(rdfXmlData);
final serialized = rdfxml.encode(graph);
// Option 2: Register with RdfCore
final rdf = RdfCore.withStandardCodecs(additionalCodecs: [RdfXmlCodec()])
// Now it can be used with the rdf instance in addition to turtle etc.
final graphFromRdf = rdf.decode(rdfXmlData, contentType: 'application/rdf+xml');
}
RDF Dataset Canonicalization
For full RDF Dataset Canonicalization (RDF-CANON) compliance, use the separate rdf_canonicalization package.
dart pub add rdf_canonicalization
import 'package:rdf_core/rdf_core.dart';
import 'package:rdf_canonicalization/rdf_canonicalization.dart';
void main() {
// Create a dataset with blank nodes
final dataset = RdfDataset.fromQuads([
Quad(BlankNodeTerm(), const IriTerm('http://example.org/name'), LiteralTerm.string('Alice')),
Quad(BlankNodeTerm(), const IriTerm('http://example.org/name'), LiteralTerm.string('Bob')),
]);
// Canonicalize the dataset according to RDF-CANON spec
final canonicalNQuads = canonicalize(dataset);
print('Canonical N-Quads:\n$canonicalNQuads');
// Or canonicalize a single graph
final graph = RdfGraph(triples: [
Triple(BlankNodeTerm(), const IriTerm('http://example.org/name'), LiteralTerm.string('Example')),
]);
final canonicalGraph = canonicalizeGraph(graph);
print('Canonical graph:\n$canonicalGraph');
// Test if two datasets are semantically equivalent
final dataset2 = RdfDataset.fromQuads([
Quad(BlankNodeTerm(), const IriTerm('http://example.org/name'), LiteralTerm.string('Bob')),
Quad(BlankNodeTerm(), const IriTerm('http://example.org/name'), LiteralTerm.string('Alice')),
]);
final isEquivalent = isIsomorphic(dataset, dataset2);
print('Are datasets equivalent? $isEquivalent');
}
Note: The canonical
option in this library's N-Quads and N-Triples encoders provides basic deterministic output but does not implement the full RDF Dataset Canonicalization specification. For complete RDF-CANON compliance (including proper blank node canonicalization), use the rdf_canonicalization
package as shown above.
Graph Merging
final merged = graph1.merge(graph2);
Pattern Queries
// Find triples matching a pattern
final results = graph.findTriples(subject: subject);
// Check if matching triples exist (more efficient than findTriples when you only need boolean result)
if (graph.hasTriples(subject: john, predicate: foaf.name)) {
print('John has a name property');
}
// Create filtered graphs for composition and chaining
final johnGraph = graph.matching(subject: john);
final typeGraph = graph.matching(predicate: rdf.type);
// Chain operations for powerful workflows
final result = graph
.matching(subject: john) // Get all John's information
.merge(otherGraph) // Add additional data
.matching(predicate: foaf.knows); // Filter to relationships only
Blank Node Handling
// Note: BlankNodeTerm is based on identity - if you call BlankNodeTerm()
// a second time, it will be a different blank node and get a different
// label in encoding codecs. You have to reuse an instance, if you
// want to refer to the same blank node.
final bnode = BlankNodeTerm();
final newGraph = graph.withTriple(Triple(bnode, predicate, object));
Non-Standard Turtle decoding
import 'package:rdf_core/rdf_core.dart';
final nonStandardTurtle = '''
@base <http://my.example.org/> .
@prefix ex: <http://example.org/>
ex:resource123 a Type . // "Type" without prefix is resolved to <http://my.example.org/Type>
''';
// Create an options instance with the appropriate configuration
final options = TurtleDecoderOptions(
parsingFlags: {
TurtleParsingFlag.allowDigitInLocalName, // Allow local names with digits like "resource123"
TurtleParsingFlag.allowMissingDotAfterPrefix, // Allow prefix declarations without trailing dot
TurtleParsingFlag.allowIdentifiersWithoutColon, // Treat terms without colon as IRIs resolved against base URI
}
);
// Option 1: Use the options with the global rdf variable
final graph = rdf.decode(nonStandardTurtle, options: options);
// Option 2: Use the options to derive a new codec from the global turtle variable
final configuredTurtle = turtle.withOptions(decoder: options);
final graph2 = configuredTurtle.decode(nonStandardTurtle);
// Option 3: Configure a custom TurtleCodec with specific parsing flags
final customTurtleCodec = TurtleCodec(decoderOptions: options);
final graph3 = customTurtleCodec.decode(nonStandardTurtle);
// Option 4: Register the custom codec with an RdfCore instance - note that this
// time we register only the specified codecs here. If we want jsonld, we have to
// add it to the list as well.
final customRdf = RdfCore.withCodecs(codecs: [customTurtleCodec]);
final graph4 = customRdf.decode(nonStandardTurtle, contentType: 'text/turtle');
β οΈ Error Handling
- All core methods throw Dart exceptions (e.g.,
ArgumentError
,RdfValidationException
) for invalid input or constraint violations. - Catch and handle exceptions for robust RDF processing.
π¦ Performance
- Triple, Term, and IRI equality/hashCode are O(1)
- Automatic query optimization: Lazy indexing provides O(1) subject-based queries with zero memory cost until first use
- Graph queries (
findTriples
,hasTriples
) benefit from transparent performance improvements - Designed for large-scale, high-performance RDF workloads with intelligent caching
πΊοΈ API Overview
Type | Description |
---|---|
IriTerm |
Represents an IRI (Internationalized Resource Identifier) |
LiteralTerm |
Represents an RDF literal value |
BlankNodeTerm |
Represents a blank node |
Triple |
Atomic RDF statement (subject, predicate, object) |
Quad |
RDF statement with optional graph context (subject, predicate, object, graph) |
RdfGraph |
Collection of RDF triples with automatic query optimization |
RdfDataset |
Collection of named graphs plus a default graph |
RdfNamedGraph |
A named graph pair (name + graph) |
RdfGraph.findTriples() |
Find triples matching a pattern (O(1) for subject-based queries) |
RdfGraph.hasTriples() |
Check if matching triples exist (boolean result, optimized) |
RdfGraph.matching() |
Create filtered graphs for composition and chaining |
RdfGraphCodec |
Base class for decoding/encoding RDF Graphs in various formats |
RdfDatasetCodec |
Base class for decoding/encoding RDF Datasets in various formats |
RdfGraphDecoder |
Base class for decoding RDF Graphs |
RdfGraphEncoder |
Base class for encoding RDF Graphs |
RdfDatasetDecoder |
Base class for decoding RDF Datasets |
RdfDatasetEncoder |
Base class for encoding RDF Datasets |
turtle |
Global convenience variable for Turtle codec |
jsonldGraph |
Global convenience variable for JSON-LD codec |
ntriples |
Global convenience variable for N-Triples codec |
nquads |
Global convenience variable for N-Quads codec |
rdf |
Global RdfCore instance with standard codecs |
π Standards & References
- RDF 1.1 Concepts
- RDF 1.1 Datasets
- RDF Dataset Canonicalization - See rdf_canonicalization package
- Turtle: Terse RDF Triple Language
- N-Triples
- N-Quads
- JSON-LD 1.1
- SHACL: Shapes Constraint Language
π§ Object Mapping with rdf_mapper
For object-oriented access to RDF data, our companion project rdf_mapper
allows seamless mapping between Dart objects and RDF. It works especially well with rdf_vocabularies
, which provides constants for well-known vocabularies (like schema.org's Person
available as the SchemaPerson
class):
// Our simple dart class
class Person {
final String id;
final String givenName;
Person({required this.id, this.givenName})
}
// Define a Mapper with our API for mapping between RDF and Objects
class PersonMapper implements IriNodeMapper<Person> {
@override
IriTerm? get typeIri => SchemaPerson.classIri;
@override
(IriTerm, List<Triple>) toRdfNode(Person value, SerializationContext context, {RdfSubject? parentSubject}) {
// convert dart objects to triples using the fluent builder API
return context.nodeBuilder(const IriTerm(value.id))
.literal(SchemaPerson.givenName, value.givenName)
.build();
}
@override
Person fromRdfNode(IriTerm term, DeserializationContext context) {
final reader = context.reader(term);
return Person(
id: term.iri,
name: reader.require<String>(SchemaPerson.givenName),
);
}
}
// Register our Mapper and create the rdfMapper facade
final rdfMapper = RdfMapper.withMappers((registry) {
registry.registerMapper<Person>(PersonMapper());
});
// Create RDF representation from Dart objects
final person = Person(id: "https://example.com/person/234234", givenName: "John");
final turtle = rdfMapper.encode(person);
// Create JSON-LD representation
final jsonLd = rdfMapper.encode(person, contentType: 'application/ld+json');
// Access the underlying RDF graph
final graph = rdfMapper.graph.encode(person);
π£οΈ Roadmap / Next Steps
- Improve jsonld decoder/encoder (full RdfDataset support, better support for base uri, include realworld tests for e.g. foaf.jsonld, support @vocab)
- RDF 1.2: Rdf-Star
- SHACL and schema validation
- Performance optimizations for large graphs
- Optimize streaming decoding and encoding
π€ Contributing
Contributions, bug reports, and feature requests are welcome!
- Fork the repo and submit a PR
- See CONTRIBUTING.md for guidelines
- Join the discussion in GitHub Issues
π€ AI Policy
This project is proudly human-led and human-controlled, with all key decisions, design, and code reviews made by people. At the same time, it stands on the shoulders of LLM giants: generative AI tools are used throughout the development process to accelerate iteration, inspire new ideas, and improve documentation quality. We believe that combining human expertise with the best of AI leads to higher-quality, more innovative open source software.
Β© 2025 Klas KalaΓ. Licensed under the MIT License.
Libraries
- rdf_core
- RDF (Resource Description Framework) Library for Dart
- rdf_core_extend
- RDF Core Extension API